Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 162: 111899, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128468

RESUMO

Smartphone accelerometry has potential to provide clinicians with specialized gait analysis not available in most clinical settings. The Gait&Balance Application (G&B App) uses smartphone accelerometry to assess spatiotemporal gait parameters under two conditions: walking looking straight ahead and walking with horizontal head turns. This study investigated the validity of G&B App gait parameters compared with the GAITRite® pressure-sensitive walkway. Healthy young and older adults (age range 21-85 years) attended a single session where a smartphone was secured over the lumbosacral junction. Data were collected concurrently with the app and GAITRite® systems as participants completed the two walking conditions. Spatiotemporal gait parameters for 54 participants were determined from both systems and agreement evaluated with partial Pearson's correlation coefficients and limits of agreement. The results demonstrated moderate to excellent validity for G&B App measures of step time (rp 0.97, 95 % CI [0.96, 0.98]), walking speed (rp 0.83 [0.78, 0.87]), and step length (rp 0.74, [0.66, 0.80]) when walking looking straight ahead, and results were comparable with head turns. The validity of walking speed and step length measures was influenced by sex and height. G&B App measures of step length variability, step time variability, step length asymmetry, and step time asymmetry had poor validity. The G&B App has potential to provide valid measures of unilateral and bilateral step time, unilateral and bilateral step length, and walking speed, under two walking conditions in healthy young and older adults. Further research should validate this tool in clinical conditions and optimise the algorithm for demographic characteristics.


Assuntos
Marcha , Smartphone , Humanos , Idoso , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Caminhada , Velocidade de Caminhada , Análise da Marcha , Reprodutibilidade dos Testes
2.
JMIR Rehabil Assist Technol ; 10: e49702, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079202

RESUMO

BACKGROUND: Rehabilitation technologies for people with stroke are rapidly evolving. These technologies have the potential to support higher volumes of rehabilitation to improve outcomes for people with stroke. Despite growing evidence of their efficacy, there is a lack of uptake and sustained use in stroke rehabilitation and a call for user-centered design approaches during technology design and development. This study focuses on a novel rehabilitation technology called exciteBCI, a complex neuromodulatory wearable technology in the prototype stage that augments locomotor rehabilitation for people with stroke. The exciteBCI consists of a brain computer interface, a muscle electrical stimulator, and a mobile app. OBJECTIVE: This study presents the evaluation phase of an iterative user-centered design approach supported by a qualitative descriptive methodology that sought to (1) explore users' perspectives and experiences of exciteBCI and how well it fits with rehabilitation, and (2) facilitate modifications to exciteBCI design features. METHODS: The iterative usability evaluation of exciteBCI was conducted in 2 phases. Phase 1 consisted of 3 sprint cycles consisting of single usability sessions with people with stroke (n=4) and physiotherapists (n=4). During their interactions with exciteBCI, participants used a "think-aloud" approach, followed by a semistructured interview. At the end of each sprint cycle, device requirements were gathered and the device was modified in preparation for the next cycle. Phase 2 focused on a "near-live" approach in which 2 people with stroke and 1 physiotherapist participated in a 3-week program of rehabilitation augmented by exciteBCI (n=3). Participants completed a semistructured interview at the end of the program. Data were analyzed from both phases using conventional content analysis. RESULTS: Overall, participants perceived and experienced exciteBCI positively, while providing guidance for iterative changes. Five interrelated themes were identified from the data: (1) "This is rehab" illustrated that participants viewed exciteBCI as having a good fit with rehabilitation practice; (2) "Getting the most out of rehab" highlighted that exciteBCI was perceived as a means to enhance rehabilitation through increased engagement and challenge; (3) "It is a tool not a therapist," revealed views that the technology could either enhance or disrupt the therapeutic relationship; and (4) "Weighing up the benefits versus the burden" and (5) "Don't make me look different" emphasized important design considerations related to device set-up, use, and social acceptability. CONCLUSIONS: This study offers several important findings that can inform the design and implementation of rehabilitation technologies. These include (1) the design of rehabilitation technology should support the therapeutic relationship between the patient and therapist, (2) social acceptability is a design priority in rehabilitation technology but its importance varies depending on the use context, and (3) there is value in using design research methods that support understanding usability in the context of sustained use.

3.
Brain Sci ; 13(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38137177

RESUMO

Intervention parameters such as the challenge, amount, and dosage (challenge × amount) have the potential to alter the efficacy of rehabilitation interventions after stroke. This systematic review investigated the effect of intervention parameters of challenge, amount, and dosage on improvements in walking outcomes following treadmill training (TT) and comparison interventions in people with stroke. Randomized controlled trials were included if they: (i) investigated interventions of TT or bodyweight-supported TT (BWSTT); (ii) made comparisons with other physiotherapy interventions, other types of TT, or no intervention; (iii) studied people with stroke; (iv) reported sufficient data on challenge and amount parameters; and (v) measured walking speed or endurance. Completeness of reporting was evaluated using the TIDieR-Rehab checklist and risk of bias was assessed using the revised Cochrane risk-of-bias tool. The review included 26 studies; 15 studies compared TT or BWSTT with other physiotherapy interventions and 11 studies compared different types of TT. Meta-analyses provided evidence with low to moderate certainty that greater differences in challenge and dosage between treadmill and comparison physiotherapy interventions produced greater effects on walking endurance (p < 0.01). However, challenge and dosage did not influence walking speed outcomes. The analysis of intervention amount was limited by the lack of studies that manipulated the amount of intervention. Overall, the findings indicate that, after stroke, some of the efficacy of TT on walking endurance can be explained by the challenge level during training. This supports the implementation of TT at higher challenge levels in stroke rehabilitation practice.

4.
Gait Posture ; 100: 57-64, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481647

RESUMO

BACKGROUND: The Gait&Balance (G&B) App has produced valid and reliable measures of gait and balance in young healthy adults but has not been tested in older adults. RESEARCH QUESTION: In healthy middle-to-older aged adults, are G&B App measurements sensitive to age, valid against clinical and kinematic measures, and reliable? METHOD: Healthy participants (n = 34, 14 male, 42-94 years) completed the G&B App protocol three times within a single session. 3D kinematics were collected concurrently. Clinical balance measures were collected (Modified Clinical Test of Sensory Interaction in Balance (mCTSIB), Mini Balance Evaluation Systems Test (MBT), and Functional Gait Assessment (FGA)). Sensitivity to age was assessed with Pearson's correlations. Validity tests included Pearson's correlations and Bland-Altman limits of agreement. Reliability tests included intra-class correlation coefficients and standard error of the measure. RESULTS: During quiet stance on a compliant surface, the G&B App was sensitive to age-related differences not detectable with the mCTSIB. During walking tasks, there was adequate convergent validity between the MBT and G&B App measures of step length, and between the FGA and G&B App measures of walking speed, step length, and periodicity. The G&B App had moderate-to-excellent validity against 3D kinematics for postural stability during quiet stance (r 0.98 [0.98, 0.99]), step time (r 0.97 [0.96, 0.98]), walking speed (r 0.79 [0.7, 0.86]), and step length (r 0.73 [0.61, 0.81]). Test-retest reliability was moderate-to-excellent for G&B App measures of postural stability, walking speed, periodicity, step length, and step time. G&B App measures of step length asymmetry, step length variability, step time asymmetry, and step time variability had poor validity and reliability. SIGNIFICANCE: The G&B App was sensitive to age-related differences in balance not detectable with clinical measurement. It provides valid and reliable measures of postural stability, step length, step time, and periodicity, which are not currently available in standard practice.


Assuntos
Marcha , Smartphone , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Fenômenos Biomecânicos , Reprodutibilidade dos Testes , Caminhada , Acelerometria/métodos , Equilíbrio Postural
5.
Ann Clin Transl Neurol ; 9(5): 722-733, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35488791

RESUMO

OBJECTIVE: We propose a novel cue-based asynchronous brain-computer interface(BCI) for neuromodulation via the pairing of endogenous motor cortical activity with the activation of somatosensory pathways. METHODS: The proposed BCI detects the intention to move from single-trial EEG signals in real time, but, contrary to classic asynchronous-BCI systems, the detection occurs only during time intervals when the patient is cued to move. This cue-based asynchronous-BCI was compared with two traditional BCI modes (asynchronous-BCI and offline synchronous-BCI) and a control intervention in chronic stroke patients. The patients performed ankle dorsiflexion movements of the paretic limb in each intervention while their brain signals were recorded. BCI interventions decoded the movement attempt and activated afferent pathways via electrical stimulation. Corticomotor excitability was assessed using motor-evoked potentials in the tibialis-anterior muscle induced by transcranial magnetic stimulation before, immediately after, and 30 min after the intervention. RESULTS: The proposed cue-based asynchronous-BCI had significantly fewer false positives/min and false positives/true positives (%) as compared to the previously developed asynchronous-BCI. Linear-mixed-models showed that motor-evoked potential amplitudes increased following all BCI modes immediately after the intervention compared to the control condition (p <0.05). The proposed cue-based asynchronous-BCI resulted in the largest relative increase in peak-to-peak motor-evoked potential amplitudes(141% ± 33%) among all interventions and sustained it for 30 min(111% ± 33%). INTERPRETATION: These findings prove the high performance of a newly proposed cue-based asynchronous-BCI intervention. In this paradigm, individuals receive precise instructions (cue) to promote engagement, while the timing of brain activity is accurately detected to establish a precise association with the delivery of sensory input for plasticity induction.


Assuntos
Interfaces Cérebro-Computador , Acidente Vascular Cerebral , Sinais (Psicologia) , Potencial Evocado Motor/fisiologia , Humanos , Acidente Vascular Cerebral/terapia , Estimulação Magnética Transcraniana/métodos
6.
Front Neurosci ; 15: 721387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650399

RESUMO

The movement-related cortical potential (MRCP) is a brain signal that can be recorded using surface electroencephalography (EEG) and represents the cortical processes involved in movement preparation. The MRCP has been widely researched in simple, single-joint movements, however, these movements often lack ecological validity. Ecological validity refers to the generalizability of the findings to real-world situations, such as neurological rehabilitation. This scoping review aimed to synthesize the research evidence investigating the MRCP in ecologically valid movement tasks. A search of six electronic databases identified 102 studies that investigated the MRCP during multi-joint movements; 59 of these studies investigated ecologically valid movement tasks and were included in the review. The included studies investigated 15 different movement tasks that were applicable to everyday situations, but these were largely carried out in healthy populations. The synthesized findings suggest that the recording and analysis of MRCP signals is possible in ecologically valid movements, however the characteristics of the signal appear to vary across different movement tasks (i.e., those with greater complexity, increased cognitive load, or a secondary motor task) and different populations (i.e., expert performers, people with Parkinson's Disease, and older adults). The scarcity of research in clinical populations highlights the need for further research in people with neurological and age-related conditions to progress our understanding of the MRCPs characteristics and to determine its potential as a measure of neurological recovery and intervention efficacy. MRCP-based neuromodulatory interventions applied during ecologically valid movements were only represented in one study in this review as these have been largely delivered during simple joint movements. No studies were identified that used ecologically valid movements to control BCI-driven external devices; this may reflect the technical challenges associated with accurately classifying functional movements from MRCPs. Future research investigating MRCP-based interventions should use movement tasks that are functionally relevant to everyday situations. This will facilitate the application of this knowledge into the rehabilitation setting.

7.
Brain Sci ; 11(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673171

RESUMO

Advances in our understanding of neural plasticity have prompted the emergence of neuromodulatory interventions, which modulate corticomotor excitability (CME) and hold potential for accelerating stroke recovery. Endogenous paired associative stimulation (ePAS) involves the repeated pairing of a single pulse of peripheral electrical stimulation (PES) with endogenous movement-related cortical potentials (MRCPs), which are derived from electroencephalography. However, little is known about the optimal parameters for its delivery. A factorial design with repeated measures delivered four different versions of ePAS, in which PES intensities and movement type were manipulated. Linear mixed models were employed to assess interaction effects between PES intensity (suprathreshold (Hi) and motor threshold (Lo)) and movement type (Voluntary and Imagined) on CME. ePAS interventions significantly increased CME compared to control interventions, except in the case of Lo-Voluntary ePAS. There was an overall main effect for the Hi-Voluntary ePAS intervention immediately post-intervention (p = 0.002), with a sub-additive interaction effect at 30 min' post-intervention (p = 0.042). Hi-Imagined and Lo-Imagined ePAS significantly increased CME for 30 min post-intervention (p = 0.038 and p = 0.043 respectively). The effects of the two PES intensities were not significantly different. CME was significantly greater after performing imagined movements, compared to voluntary movements, with motor threshold PES (Lo) 15 min post-intervention (p = 0.012). This study supports previous research investigating Lo-Imagined ePAS and extends those findings by illustrating that ePAS interventions that deliver suprathreshold intensities during voluntary or imagined movements (Hi-Voluntary and Hi-Imagined) also increase CME. Importantly, our findings indicate that stimulation intensity and movement type interact in ePAS interventions. Factorial designs are an efficient way to explore the effects of manipulating the parameters of neuromodulatory interventions. Further research is required to ensure that these parameters are appropriately refined to maximise intervention efficacy for people with stroke and to support translation into clinical practice.

8.
Brain Sci ; 11(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535411

RESUMO

Voluntary activation (VA) is measured by applying supramaximal electrical stimulation to a muscle during a maximal voluntary contraction (MVC). The amplitude of the evoked muscle twitch is used to determine any VA deficit, and indicates incomplete central neural drive to the motor units. People with stroke experience VA deficits and greater levels of central fatigue, which is the decrease in VA that occurs following exercise. This study investigated the between-session reliability of VA and central fatigue of the tibialis anterior muscle (TA) in people with chronic stroke (n = 12), using the interpolated twitch technique (ITT), adjusted-ITT, and central activation ratio (CAR) methods. On two separate sessions, supramaximal electrical stimulation was applied to the TA when it was at rest and maximally activated, at the start and end of a 30-s isometric dorsiflexor MVC. The most reliable measures of VA were obtained using the CAR calculation on transformed data, which produced an ICC of 0.92, and a lower bound confidence interval in the good range (95% CI 0.77 to 0.98). Reliability was lower for the CAR calculation on non-transformed data (ICC 0.82, 95% CI 0.63 to 0.91) and the ITT and adjusted-ITT calculations on transformed data (ICCs 0.82, 95% CIs 0.51 to 0.94), which had lower bound confidence intervals in the moderate range. The two ITT calculations on non-transformed data demonstrated the poorest reliability (ICCs 0.62, 95% CI 0.25 to 0.74). Central fatigue measures demonstrated very poor reliability. Thus, the reliability for VA in people with chronic stroke ranged from good to poor, depending on the calculation method and statistical analysis method, whereas the reliability for central fatigue was very poor.

9.
Sensors (Basel) ; 22(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35009667

RESUMO

Advances in technology provide an opportunity to enhance the accuracy of gait and balance assessment, improving the diagnosis and rehabilitation processes for people with acute or chronic health conditions. This study investigated the validity and reliability of a smartphone-based application to measure postural stability and spatiotemporal aspects of gait during four static balance and two gait tasks. Thirty healthy participants (aged 20-69 years) performed the following tasks: (1) standing on a firm surface with eyes opened, (2) standing on a firm surface with eyes closed, (3) standing on a compliant surface with eyes open, (4) standing on a compliant surface with eyes closed, (5) walking in a straight line, and (6) walking in a straight line while turning their head from side to side. During these tasks, the app quantified the participants' postural stability and spatiotemporal gait parameters. The concurrent validity of the smartphone app with respect to a 3D motion capture system was evaluated using partial Pearson's correlations (rp) and limits of the agreement (LoA%). The within-session test-retest reliability over three repeated measures was assessed with the intraclass correlation coefficient (ICC) and the standard error of measurement (SEM). One-way repeated measures analyses of variance (ANOVAs) were used to evaluate responsiveness to differences across tasks and repetitions. Periodicity index, step length, step time, and walking speed during the gait tasks and postural stability outcomes during the static tasks showed moderate-to-excellent validity (0.55 ≤ rp ≤ 0.98; 3% ≤ LoA% ≤ 12%) and reliability scores (0.52 ≤ ICC ≤ 0.92; 1% ≤ SEM% ≤ 6%) when the repetition effect was removed. Conversely, step variability and asymmetry parameters during both gait tasks generally showed poor validity and reliability except step length asymmetry, which showed moderate reliability (0.53 ≤ ICC ≤ 0.62) in both tasks when the repetition effect was removed. Postural stability and spatiotemporal gait parameters were found responsive (p < 0.05) to differences across tasks and test repetitions. Along with sound clinical judgement, the app can potentially be used in clinical practice to detect gait and balance impairments and track the effectiveness of rehabilitation programs. Further evaluation and refinement of the app in people with significant gait and balance deficits is needed.


Assuntos
Aplicativos Móveis , Marcha , Humanos , Equilíbrio Postural , Reprodutibilidade dos Testes , Smartphone , Caminhada , Velocidade de Caminhada
10.
Front Hum Neurosci ; 14: 156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499686

RESUMO

BACKGROUND: Endogenous paired associative stimulation (ePAS) is a neuromodulatory intervention that has potential to aid stroke recovery. ePAS involves pairing endogenous electroencephalography (EEG) signals known as movement-related cortical potentials (MRCPs), with peripheral electrical stimulation. Previous studies have used transcranial magnetic stimulation (TMS) to demonstrate changes in corticomotor excitability following ePAS. However, the use of TMS as a measure in stroke research is limited by safety precautions, intolerance, and difficulty generating a measurable response in more severely affected individuals. We were interested in evaluating the effect of ePAS using more feasible measures in people with stroke. This study asks whether ePAS produces immediate improvements in the primary outcomes of maximal voluntary isometric contraction (MVIC) and total neuromuscular fatigue of the dorsiflexor muscles, and in the secondary outcomes of muscle power, voluntary activation (VA), central fatigue, peripheral fatigue, and electromyography activity. METHOD: In this repeated-measures cross-over study, 15 participants with chronic stroke completed two interventions, ePAS and sham, in a randomized order. During ePAS, 50 repetitions of visually cued dorsiflexion were completed, while single pulses of electrical stimulation were delivered to the deep branch of the common peroneal nerve. Each somatosensory volley was timed to arrive in the primary motor cortex at the peak negativity of the MRCP. Univariate and multivariate linear mixed models were used to analyze the primary and secondary data, respectively. RESULTS: There was a statistically significant increase in dorsiflexor MVIC immediately following the ePAS intervention (mean increase 7 N), compared to the sham intervention (mean change 0 N) (univariate between-condition analysis p = 0.047). The multivariate analysis revealed a statistically significant effect of ePAS on VA of the tibialis anterior muscle, such that ePAS increased VA by 7 percentage units (95% confidence interval 1.3-12.7%). There was no statistically significant effect on total neuromuscular fatigue, muscle power, or other secondary measures. CONCLUSION: A single session of ePAS can significantly increase isometric muscle strength and VA in people with chronic stroke. The findings confirm that ePAS has a central neuromodulatory mechanism and support further exploration of its potential as an adjunct to stroke rehabilitation. In addition, the findings offer alternative, feasible outcome measures for future research. CLINICAL TRIAL REGISTRATION: Australia New Zealand Clinical Trials Registry ACTRN12617000838314 (www.anzctr.org.au), Universal Trial Number U111111953714.

11.
Sensors (Basel) ; 20(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344692

RESUMO

Event related potentials (ERPs) provide insight into the neural activity generated in response to motor, sensory and cognitive processes. Despite the increasing use of ERP data in clinical research little is known about the reliability of human manual ERP labelling methods. Intra-rater and inter-rater reliability were evaluated in five electroencephalography (EEG) experts who labelled the peak negativity of averaged movement related cortical potentials (MRCPs) derived from thirty datasets. Each dataset contained 50 MRCP epochs from healthy people performing cued voluntary or imagined movement, or people with stroke performing cued voluntary movement. Reliability was assessed using the intraclass correlation coefficient and standard error of measurement. Excellent intra- and inter-rater reliability was demonstrated in the voluntary movement conditions in healthy people and people with stroke. In comparison reliability in the imagined condition was low to moderate. Post-hoc secondary epoch analysis revealed that the morphology of the signal contributed to the consistency of epoch inclusion; potentially explaining the differences in reliability seen across conditions. Findings from this study may inform future research focused on developing automated labelling methods for ERP feature extraction and call to the wider community of researchers interested in utilizing ERPs as a measure of neurophysiological change or in the delivery of EEG-driven interventions.


Assuntos
Potenciais Evocados/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Intervalos de Confiança , Eletroencefalografia , Processamento Eletrônico de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Front Neurosci ; 13: 895, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507367

RESUMO

Non-invasive neuromodulatory interventions have the potential to influence neural plasticity and augment motor rehabilitation in people with stroke. Paired associative stimulation (PAS) involves the repeated pairing of single pulses of electrical stimulation to a peripheral nerve and single pulses of transcranial magnetic stimulation over the contralateral primary motor cortex. Efficacy of PAS in the lower limb of healthy and stroke populations has not been systematically appraised. Optimal protocols including stimulation parameter settings have yet to be determined. This systematic review (a) examines the efficacy of PAS on lower limb corticomotor excitability in healthy and stroke populations and (b) evaluates the stimulation parameters employed. Five databases were searched for randomized, non-randomized, and pre-post experimental studies evaluating lower limb PAS in healthy and stroke populations. Two independent reviewers identified eligible studies and assessed methodological quality using a modified Downs and Blacks Tool and the TMS Checklist. Intervention stimulation parameters and TMS measurement details were also extracted and compared. Twelve articles, comprising 24 experiments, met the inclusion criteria. Four articles evaluated PAS in people with stroke. Following a single session of PAS, 21 experiments reported modulation of corticomotor excitability, lasting up to 60 min; however, the research lacked methodological rigor. Intervention stimulation parameters were highly variable across experiments, and whilst these appeared to influence efficacy, variations in the intervention and outcome assessment methods hindered the ability to draw conclusions about optimal parameters. Lower limb PAS research requires further investigation before considering its translation into clinical practice. Eight key recommendations serve as guide for enhancing future research in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...